Thursday, August 20, 2009

Object-Oriented Programming...

Object-Oriented Programming(OOP) uses "Objects" – data structures consisting of datafields and methods – and their interactions to design applications and computer programs. Programming techniques may include features such as Information Hiding, Data Abstraction, Encapsulation, Modularity, Polymorphism, and Inheritance. It was not commonly used in mainstream software application development until the early 1990s. Many modern programming languages now support OOP.

One of the principal advantages of object-oriented programming techniques over procedural programming techniques is that they enable programmers to create modules that do not need to be changed when a new type of object is added. A programmer can simply create a new object that inherits many of its features from existing objects. This makes object-oriented programs easier to modify.

The methodology focuses on data rather than processes, with programs composed of self-sufficient modules (objects) each containing all the information needed to manipulate its own data structure. This is in contrast to the existing modular programming which had been dominant for many years that focused on the function of a module, rather than specifically the data, but equally provided for code reuse, and self-sufficient reusable units of programming logic, enabling collaboration through the use of linked modules (subroutines). This more conventional approach, which still persists, tends to consider data and behavior separately.

An object-oriented program may thus be viewed as a collection of cooperating objects, as opposed to the conventional model, in which a program is seen as a list of tasks (subroutines) to perform.

OOP can be used to translate from real-world phenomena to program elements (and vice versa). OOP was even invented for the purpose of physical modeling in the Simula-67 programming language. However, not everyone agrees that direct real-world mapping is facilitated by OOP, or is even a worthy goal; Bertrand Meyer argues in Object-Oriented Software Construction that a program is not a model of the world but a model of some part of the world; "Reality is a cousin twice removed". At the same time, some principal limitations of OOP had been noted.

However, Niklaus Wirth said of OOP in his paper "Good Ideas through the Looking Glass", "This paradigm closely reflects the structure of systems 'in the real world', and it is therefore well suited to model complex systems with complex behaviours.

No comments: